Найдите наименьшее значение функции y=x^3+18x^2+17 на отрезке [–3;3]

Необходимо найти производную функции y=x^3+18x^2+17 , чтобы найти наименьшее значение. Производная выглядит следующим образом:

y’=3x2+36x

Приравниваем её к нулю для нахождения минимальной и максимальной точек. Получаем:

3x2+36x=0
3x(x+12)=0
x=0 и x=–12

Вторая точка не соответствует заданному отрезку, поэтому мы её убираем. Используя метод интервалов, рисуем 3 точки -3,0,3. В данном случае, точкой минимума как раз будет 0. При нуле функция равняется 17

17 при точке 0

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!:

Adblock
detector